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LETTER TO THE EDITOR

Symmetries of factorization chains for the discrete
Schrodinger equation

Wacheslav Spiridonoyv
Laboratory of Theoretical Physics, JINR, Dubna, Moscow region, 141980 Russia

Received 23 October 1996

Abstract. Factorization chains for the one-dimensional discrete &tihger equation (or the
three-term recurrence relation for orthogonal polynomials) defining discrete-time Toda and
\olterra lattices are considered. Discrete symmetries, arising from a freedom in the intermediate
steps of corresponding double spectral transformations, are described. Some consequences for
orthogonal polynomials are discussed.

This letter is devoted to the one-dimensional discrete &@tihger equation and the three-
term recurrence relation for orthogonal polynomials. The main goal of the present and other
related works is to reconsider the theory of special functions defined upon the standard
differential and finite-difference Sabdinger equations as a subcase of the general theory
of self-similar systems. In principle, the corresponding point of view could be applied to
more complicated spectral problems, but our attention is paid to thé@alyer equations
because they play a prominent role in quantum mechanics, the theory of solitons and some
other branches of physics. Within this approach the ‘exactly solvable potentials’ and the
associated special functions appear as systems admitting additional similarity symmetries.

The factorization method [1-3] is a basic object in the following considerations. Itis tied
to the Darboux transformations for Sturm—Liouville problems. In the theory of orthogonal
polynomials, related constructions were considered by Christoffel and Geronimus. Because
under the corresponding transformations the spectrum of taken problems is changed in a
simple controllable way, it is convenient to refer to all of them as spectral transformations.
Not so long ago the factorization method found an interpretation within the supersymmetric
guantum mechanics and its parasupersymmetric generalization [4]. The latter idea was
useful in the discovery of an infinite hierarchy of self-similar potentials defining a new
class ofg-special functions (see [5] and references therein).

An interesting Weyl group symmetry of the factorization chain for the differential
Schibdinger equation was found in [6]. The main result of this paper consists in deriving
an explicit form of its analogue for the discrete Sudinger equation (or the three-term
recurrence relation for orthogonal polynomials). A discrete factorization chain and some of
its symmetry reductionsy¢periodic closures) were described in [7]. In [8] it was shown that
this chain defines a discrete-time Toda lattice, a very simple discrete-time Volterra lattice
has been derived and the Askey-Wilson polynomials (the most general set of classical
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orthogonal polynomials) were shown to define a class of solutions of these lattices. Our
notation below is close to that of [5, 8].

Let us start from a brief description of the Weyl group symmetry in the standard
differential case [6]. Consider an infinite chain of eigenvalue problems

Hjr(x) = =9/ () 4+ u; () (x) = Ay (x), JEL 1)

such that the nearest neighbours are related to each other by the forward discrete-time
evolution law

Lii_1(x)
Vi ==
where fj(x) are some functions, called superpotentials, apdre some constants. It is
convenient to assume thais a complex variable and that no particular boundary conditions
are imposed upon the equations (1). The backward time evolution is defined as

d
Ly=—g @

d
Yi—1(x) = Rjrj(x) R; = & fi(x). (3

The compatibility conditions of (1)—(3) are expressed as the intertwining relatlpnR; =
R;H; and L;H;_1 = H;L;. Their resolution yields the factorization conditiofy =
LjRj + )\.j ande_l = Rij +)Lj, or

wi(x) = fF)+ L@+ @) =ux) — 2fx). (4)
In the general setting this gives the abstract factorization chain
Rij‘}‘)»j =Lj,1Rj7]_+)»j71 (5)

which, in its particular differential operator realization given above, leads to the following
differential-difference equation [2]:

Q) + f1@) + fR1(0) — fP(x) = Ay — A1 (6)
Actually the explicit form ofL; andR; in (5) does not play a crucial role for the applicability
of the factorization method—below we consider the case when these operators are finite-
difference operators of the first order, but there are also cases when they have a mixed,
differential-difference form. In the latter two cases only the nature of spectral problem under
investigation is changed, for example the differential 8dimger equation is replaced by
its finite-difference analogue.

By investigating symmetries of the chain (6) and making the appropriate symmetry
reductions one can find potentials obeying additional symmetries. These symmetries allow
us to derive many properties of the solutions of corresponding ¢8atger equations
characteristic to special functions. A very general class of such self-similar potentials
is defined by a combination of the discrete symmetry—~ j + N, where N is some
integer, and the affine transformations. More precisely, it is described by the reduction
fisn(x) = qfi(gx + a), ,j+n = g°);, whereq anda are some complex parameters. In
this way one gets a set of special functions, which can be interpretgddatormations
of the Painle@-type transcendents, intrinsically related to the finite-gap potentials. From
the algebraic point of view these systems are associated with the representations of some
polynomial algebra, which foiV = 2 coincides with the quantum algehta, (1, 1). For
more details we refer to the review [5].

In addition to the global discrete symmetjy— j + N mentioned above, there is a
local one associated with a nice motion of polygons [6]. It appears from the fact that a
sequence oK Darboux transformations with the parametersi; i, ..., Aj;x—1 yields
the same final result independent of the order of intermediate steps. This is obvious from
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the Wronskian representation of tik&-step transformations [3]. As a result, there appears
a non-trivial symmetry of superpotentials. In the simplest c&se; 2, it has the form [6]

A1 = A A=Aj1 (8)
all other ingredients remaining untouched:
=[x hk=m k#jj-L
Indeed, the requirement
LiLj LiL;-s )

0= )0 = kD) (= A0 — Ay_p)

leaves two options for transformations bfs—eitherx; = A;, Aj_1 = A;_1, which does
not induce non-trivial transformations, or (8). Other relations (7) can be found from (9) or
by the direct resolution of constraints stemming from the factorization chain.

Let us denote generators of the above symmetrB;as.e. B; fi(x) = fe(x), etc. They
form a Weyl group with the composition laws [6]

B’=1 BB =BB  i#j+tl  (B1B)’=1 (10)

Let us now derive explicitly an analogue of the above symmetry for factorization chains
for the discrete Schkidinger equation [7, 8]. Consider an infinite set of spectral problems:

Hyyl = vl +ulyl  +biyi =1y njel (12)

If one imposes the boundary conditioﬂdl(k) = 0, w({(k) = 1, then by the Favard

theoremw,{ M), n=0,1,..., define a set of orthogonal polynomials of the variablein
analogy with the continuous case, define the forward time step by the Christoffel's spectral
transformation
‘ rl i .
Ipj-Hl. — r{+l + Cé wnj = LJ+1w"I (12)
! A= Xj1 A=Ay
which is known in the theory of orthogonal polynomials as a definitiokeofel polynomials
[9]. The backward discrete-time flow has the form

vt =yl + Al = Ry (13)

In (12) and (13)A;{ andC; are discrete superpotentials. The compatibility conditions again
yield factorizations of the operato#s;, which are equivalent now to the relations

uy=AJC  bl=AL+Cl (14)
The abstract factorization chain (5) in this case is equivalent to the following coupled system
of nonlinear finite-difference equations:

AIC] = ATYCI™Y Al Cl 4y = AT+ I A (15)

n-—n

In [8] these equations were shown to define a discrete-time Toda lattice. Note that the first
integralsx; ‘measure’ the breaking of isospectrality of the corresponding discrete-time flow.

In [7] some symmetries of the chain (15) were described and the folloydpgriodic
closure has been found:

AN =qA; iV =4C AjtN = qA;. (16)
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Herek is an arbitrary integer. Ifi is considered as a continuous (complex) variable, then
k may take arbitrary values as well. The closure (16) is associated with certain classical
and more general orthogonal polynomials whose recurrence coefficients are relagted to
analogues of some discrete Pairldype transcendents. In this case, the discrete spectrum
of H; is formally given by a superposition of up % geometric series.

Using the same line of reasoning as in the continuous case, for example using the
relation (9), after some straightforward calculations the author has derived the corresponding
symmetry of (15).

Proposition 1 The discrete factorization chain (discrete-time Toda lattice) (15) has the
following discrete symmetry

(hj = oD (An+ ALY
Cl+Cit—al— A
(O — DAl + ALY

~ 1 i1
Afl = A,jl +

Al — AT —
An_An Cj 1+C,{71A,£A,Jlll (17)
. -
ot i - Bl c Y
" S o Y o7 ey AV
. J i1
Cl=Cl+ % k.”ll)(c”fc"“.) . (18)
Ci+Cot = Ay — A
1= Aj=Aj1 (19)
all other A%, C* and 2, remaining unchanged.
In the continuous limitx = nh,h — 0 (if it exists), the difference spectral

transformations turn into the differential formulae (2) and (3), and the derived symmetry
turns into (7) and (8). For example, it can be seen using the following expansion in the
next-next-to-the-leading-terms order

Al — —(1+ hf;(x)) C) — —(L = hfj(x) + 3h*(fAx) — f](x) — 1))
A — 4— hzuj A= 4—h%pu U — h_jwj(x)

wherep; andu denote spectral parameters for the continuous@tihger equation. Similar
to the differential case [6], the discrete symmetries of (15} j+k and (17)—(19) describe
Backlund transformations for discrete Pairéevanscendents and theiranalogues defined
by the self-similar reduction (16). Evidently, the symmetry (17)—(19) is expected to satisfy
the group law (10), but the author was able to verify explicitly only the simplest relations
(the difficulty consists in the non-local character of transformationgjpfand C; in the
variablen).

Let us turn now to the discrete-time Volterra lattice

DI(D)_, — B) = Di (D]t — Bi-1) (20)

which has been derived in [8]. The discrete-time analogue of the relation between solutions
of the Toda and Volterra chains has the following form [8]:

Al=DiDL.,  Cl=D}. . —B)Dhr— B (21)
A; = constant- 7.
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There is also a second similar set of formulae
Al =Dy 4Dj  Cl= (D3, ~ B)(Dgg — ) (22)
with the same expression fay via g;.
From the even—odd index representation of superpotentiaBndC; via D;, one may
expect a similar splitting for symmetry transformations of the chain (20). After some tedious

calculations the author has proven the following proposition (ho symbolic manipulation
computer programs have been used in the calculations).

Proposition 2 The discrete symmetry associated with a freedom in intermediate steps of
double discrete-time shifts in the discrete-time Volterra lattice (20) Wjtk O for any j
has the form

pio L (/31‘ D] + @ .fz —A ]?_;)(Dé' Dya Dile’{;b . ) (23)
B\ Bi(Bj —D,_y— D, )+ Bj-1(Bj—1 — Dt - Di;;)

b= (ﬂlefl — v 1'2. -’ ffl).(D'{*lD’{ - D'{jD.J_l) < ) (24)
B " BB — D), — D)+ Bj-1(f1— DIt — DD

The change of spectral parametgysis as follows:

Bi=Bi1 Bi-1=8;. (25)
All other variablesD¥, B, k # j, j — 1, remain unchanged. Actually, one can reverse the

signs of D/, D]~" simultaneously with the signs ¢, 8;_1, but this symmetry is obvious
from the structure of the chain (20).

The transformation laws for superpotentia\lé and C,{ of the discrete-time Toda lattice
follow from the maps (21) and (22).
If B;—1 =0 (j is fixed), there appears a curious freedom:

~ —~——\ DI YD} - B . .
n—1"PFj

wheregq; is an arbitrary parameter. Thg_, — 0 limit in (23) and (24) corresponds to the
a; =1 choice in (26). Ifg; = 0, one has

. - . DI(DI ™t = Bi_1)
1 _ n n n 1
bj=pji  Bit=(h=1r /7 -1) Dj_l—,le (27)
n+l1 — Pi—

with a different free parameté;. The; — 0 limit in (23) and (24) corresponds tg = 1.
Suppose thag; = 0 for arbitrary j, then the chain (20) admits an integral of the form

D) = (y_,. + (-1 /2 - 1) DIt (28)

wherey; are arbitrary constants. The symmetry we are interested in now has a two-parameter
freedom

Di = (aj + (-1 Ja? - 1) DIt pit= (b,- +(-1"\/p?—1) D],

The g;, Bj—1 — 0 limits in (23) and (24) provide the transformation laws defined only upon
the subspace of solutions corresponding tojthe- +1 choices in (28).
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We would like to finish this work by giving an explicit example, illustrating how the
above symmetry changes orthogonal polynomials. Consider the following solution of the
chain (15) [8]:

AJ =nsintf /2 C/ =@+ j—1costo,2 r=—j+1
associated with a family of the Meixner polynomidré(x):
Pl 10)+ tnn+ j — D sintfOP! (1) + (ncoshd + jsintf6/2) P (A) = AP/ () (29)
Py =0 POy =1
In the standard (self-similar) case spectral transformations correspond to the change of
the parameter; — j + 1. Using the formulae (17) and (18) we find superpotentials,
corresponding to the non-standard backward discrete-time step,

~ . 1
I —nsinkfe/2( 1
Al =nsintf o/ ( + n+(—2) cosﬁ9/2>

J — | — -
Ci=n+] 1)C°5H9/2<1 n+1_|_(j_2)cosr?9/2>

which generate the following recurrence coefficients:

ﬁil-_l:AEC’Ll:n(n+j—2)sinh29 (1_ | 1 ) (30)
4 (n+ (j — 2) costt 0/2)2
bt = AJ + CJ 4+ %; =ncosh + (j — 1) sinif 6,2
B (j — 2)sintf o 31)
4n+ (j —2)costt0/2)(n + 1+ (j — 2)costt0/2)
Note that forj > 2 the coeI"ficients?,{’1 are positive fon = 0, 1? ..., which is necessary for

the positivity of the measure of the orthogonal polynomié,l’s_l(/\). This transformation
looks similar to the continuous Sdédinger equation case, when the harmonic oscillator
superpotentialfj(x) = x, corresponding to a self-similar solution of the chain (6) with

Aj = 2j, is mapped onto the singular harmonic oscillator superpoteﬁt'(ab =x+1/x
(herej is fixed due to the breakdown of self-similarity). Probably a similar interpretation
in terms of the discretized harmonic oscillator problem is valid for the relation between
the standard Meixner polynomials (or the more simple Charlier polynomials) and the above
singular system.

One essential point has not been touched on in this work, namely, the geometric
interpretation of the transformations (17)—(19) for the discrete-time Toda lattice and (23)—
(25) for the discrete-time Volterra lattice similar to the one in [6]. This is a matter for
separate consideration.

A part of this work was done in the summer of 1994 at the Centre de Recherches
Mathématiques, Univer@itde Montéal with the support from NSERC (Canada) and Fonds
FCAR (Qwebec). The author is indebted to L Vinet and A Zhedanov for generating his
interest in the discrete Sdbdinger equation the year before.

References

[1] Burchnal J L and Chaung T W 1923 Commutative ordinary differential operatésc. Lond. Math. Soc.
21 420-40
[2] Infeld L and Hul T E 1951 The factorization methdg@ev. Mod. Phys23 21-68



Letter to the Editor L21

[3] Crum M M 1955 Associated Sturm-Liouville syster@s J. Math.6 121—7

[4] Rubakos V A and Spiridone V P 1988 Parasupersymmetric quantum mechaMcsl. Phys. LettA 3
1337-47

[5] Spiridonov V 1995 Universal superpositions of coherent states and self-similar potdttiyds RevA 52
1909-35

Spiridonov V 1995Phys. RevA 53 2903 (Erratum)

[6] Adler V E 1993 Recuttings of polygorisunkts. Anal. i ego Pril27 79-82

[7] Spiridonov V, Vinet L and Zhedanov A 1993 Difference Satlinger operators with linear and exponential
discrete spectraett. Math. Phys29 63-73

[8] Spiridonov V and Zhedanov A 1995 Discrete Darboux transformations, the discrete-time Toda lattice and
the Askey—Wilson polynomialMethods Appl. Anal2 369-98

[9] Chihama T S 1978An Introduction to Orthogonal Polynomia{®ew York: Gordon and Breach)



