
Symmetries of factorization chains for the discrete Schrödinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 L15

(http://iopscience.iop.org/0305-4470/30/2/001)

Download details:

IP Address: 171.66.16.110

The article was downloaded on 02/06/2010 at 06:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) L15–L21. Printed in the UK PII: S0305-4470(97)79093-0
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Schrödinger equation
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Received 23 October 1996

Abstract. Factorization chains for the one-dimensional discrete Schrödinger equation (or the
three-term recurrence relation for orthogonal polynomials) defining discrete-time Toda and
Volterra lattices are considered. Discrete symmetries, arising from a freedom in the intermediate
steps of corresponding double spectral transformations, are described. Some consequences for
orthogonal polynomials are discussed.

This letter is devoted to the one-dimensional discrete Schrödinger equation and the three-
term recurrence relation for orthogonal polynomials. The main goal of the present and other
related works is to reconsider the theory of special functions defined upon the standard
differential and finite-difference Schrödinger equations as a subcase of the general theory
of self-similar systems. In principle, the corresponding point of view could be applied to
more complicated spectral problems, but our attention is paid to the Schrödinger equations
because they play a prominent role in quantum mechanics, the theory of solitons and some
other branches of physics. Within this approach the ‘exactly solvable potentials’ and the
associated special functions appear as systems admitting additional similarity symmetries.

The factorization method [1–3] is a basic object in the following considerations. It is tied
to the Darboux transformations for Sturm–Liouville problems. In the theory of orthogonal
polynomials, related constructions were considered by Christoffel and Geronimus. Because
under the corresponding transformations the spectrum of taken problems is changed in a
simple controllable way, it is convenient to refer to all of them as spectral transformations.
Not so long ago the factorization method found an interpretation within the supersymmetric
quantum mechanics and its parasupersymmetric generalization [4]. The latter idea was
useful in the discovery of an infinite hierarchy of self-similar potentials defining a new
class ofq-special functions (see [5] and references therein).

An interesting Weyl group symmetry of the factorization chain for the differential
Schr̈odinger equation was found in [6]. The main result of this paper consists in deriving
an explicit form of its analogue for the discrete Schrödinger equation (or the three-term
recurrence relation for orthogonal polynomials). A discrete factorization chain and some of
its symmetry reductions (q-periodic closures) were described in [7]. In [8] it was shown that
this chain defines a discrete-time Toda lattice, a very simple discrete-time Volterra lattice
has been derived and the Askey–Wilson polynomials (the most general set of classical
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orthogonal polynomials) were shown to define a class of solutions of these lattices. Our
notation below is close to that of [5, 8].

Let us start from a brief description of the Weyl group symmetry in the standard
differential case [6]. Consider an infinite chain of eigenvalue problems

Hjψj (x) ≡ −ψ ′′
j (x)+ uj (x)ψj (x) = λψj (x), j ∈ Z (1)

such that the nearest neighbours are related to each other by the forward discrete-time
evolution law

ψj(x) = Ljψj−1(x)

λ− λj
Lj ≡ − d

dx
− fj (x) (2)

wherefj (x) are some functions, called superpotentials, andλj are some constants. It is
convenient to assume thatx is a complex variable and that no particular boundary conditions
are imposed upon the equations (1). The backward time evolution is defined as

ψj−1(x) = Rjψj (x) Rj ≡ d

dx
− fj (x). (3)

The compatibility conditions of (1)–(3) are expressed as the intertwining relationsHj−1Rj =
RjHj and LjHj−1 = HjLj . Their resolution yields the factorization conditionsHj =
LjRj + λj andHj−1 = RjLj + λj , or

uj (x) = f 2
j (x)+ f ′

j (x)+ λj uj−1(x) = uj (x)− 2fj (x). (4)

In the general setting this gives the abstract factorization chain

RjLj + λj = Lj−1Rj−1 + λj−1 (5)

which, in its particular differential operator realization given above, leads to the following
differential-difference equation [2]:

f ′
j (x)+ f ′

j−1(x)+ f 2
j−1(x)− f 2

j (x) = λj − λj−1. (6)

Actually the explicit form ofLj andRj in (5) does not play a crucial role for the applicability
of the factorization method—below we consider the case when these operators are finite-
difference operators of the first order, but there are also cases when they have a mixed,
differential-difference form. In the latter two cases only the nature of spectral problem under
investigation is changed, for example the differential Schrödinger equation is replaced by
its finite-difference analogue.

By investigating symmetries of the chain (6) and making the appropriate symmetry
reductions one can find potentials obeying additional symmetries. These symmetries allow
us to derive many properties of the solutions of corresponding Schrödinger equations
characteristic to special functions. A very general class of such self-similar potentials
is defined by a combination of the discrete symmetryj → j + N , whereN is some
integer, and the affine transformations. More precisely, it is described by the reduction
fj+N(x) = qfj (qx + a), λj+N = q2λj , whereq and a are some complex parameters. In
this way one gets a set of special functions, which can be interpreted asq-deformations
of the Painlev́e-type transcendents, intrinsically related to the finite-gap potentials. From
the algebraic point of view these systems are associated with the representations of some
polynomial algebra, which forN = 2 coincides with the quantum algebrasuq(1, 1). For
more details we refer to the review [5].

In addition to the global discrete symmetryj → j + N mentioned above, there is a
local one associated with a nice motion of polygons [6]. It appears from the fact that a
sequence ofK Darboux transformations with the parametersλj , λj+1, . . . , λj+K−1 yields
the same final result independent of the order of intermediate steps. This is obvious from
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the Wronskian representation of theK-step transformations [3]. As a result, there appears
a non-trivial symmetry of superpotentials. In the simplest case,K = 2, it has the form [6]

f̃j−1 = fj−1 − λj − λj−1

fj + fj−1
f̃j = fj + λj − λj−1

fj + fj−1
(7)

λ̃j−1 = λj λ̃j = λj−1 (8)

all other ingredients remaining untouched:

f̃k(x) = fk(x) λ̃k = λk k 6= j, j − 1.

Indeed, the requirement

LjLj−1

(λ− λj )(λ− λj−1)
= L̃j L̃j−1

(λ− λ̃j )(λ− λ̃j−1)
(9)

leaves two options for transformations ofλj ’s—either λ̃j = λj , λ̃j−1 = λj−1, which does
not induce non-trivial transformations, or (8). Other relations (7) can be found from (9) or
by the direct resolution of constraints stemming from the factorization chain.

Let us denote generators of the above symmetry asBj , i.e.Bjfk(x) = f̃k(x), etc. They
form a Weyl group with the composition laws [6]

B2
j = 1 BiBj = BjBi i 6= j ± 1 (Bj−1Bj)

3 = 1. (10)

Let us now derive explicitly an analogue of the above symmetry for factorization chains
for the discrete Schrödinger equation [7, 8]. Consider an infinite set of spectral problems:

Hjψ
j
n ≡ ψ

j

n+1 + ujnψ
j

n−1 + bjnψ
j
n = λψj

n n, j ∈ Z. (11)

If one imposes the boundary conditionsψj

−1(λ) = 0, ψj

0 (λ) = 1, then by the Favard

theoremψj
n (λ), n = 0, 1, . . . , define a set of orthogonal polynomials of the variableλ. In

analogy with the continuous case, define the forward time step by the Christoffel’s spectral
transformation

ψj+1
n = ψ

j

n+1 + C
j+1
n ψ

j
n

λ− λj+1
≡ Lj+1ψ

j
n

λ− λj+1
(12)

which is known in the theory of orthogonal polynomials as a definition ofkernel polynomials
[9]. The backward discrete-time flow has the form

ψj−1
n = ψj

n + Ajnψ
j

n−1 ≡ Rjψ
j
n . (13)

In (12) and (13)Ajn andCjn are discrete superpotentials. The compatibility conditions again
yield factorizations of the operatorsHj , which are equivalent now to the relations

ujn = AjnC
j
n bjn = A

j

n+1 + Cjn + λj . (14)

The abstract factorization chain (5) in this case is equivalent to the following coupled system
of nonlinear finite-difference equations:

AjnC
j

n−1 = Aj−1
n Cj−1

n Ajn + Cjn + λj = A
j−1
n+1 + Cj−1

n + λj−1. (15)

In [8] these equations were shown to define a discrete-time Toda lattice. Note that the first
integralsλj ‘measure’ the breaking of isospectrality of the corresponding discrete-time flow.

In [7] some symmetries of the chain (15) were described and the followingq-periodic
closure has been found:

Aj+Nn = qA
j

n+k Cj+Nn = qC
j

n+k λj+N = qλj . (16)
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Herek is an arbitrary integer. Ifn is considered as a continuous (complex) variable, then
k may take arbitrary values as well. The closure (16) is associated with certain classical
and more general orthogonal polynomials whose recurrence coefficients are related toq-
analogues of some discrete Painlevé-type transcendents. In this case, the discrete spectrum
of Hj is formally given by a superposition of up toN geometric series.

Using the same line of reasoning as in the continuous case, for example using the
relation (9), after some straightforward calculations the author has derived the corresponding
symmetry of (15).

Proposition 1. The discrete factorization chain (discrete-time Toda lattice) (15) has the
following discrete symmetry

Ãj−1
n = Aj−1

n + (λj − λj−1)(A
j
n + A

j−1
n )

C
j

n−1 + C
j−1
n − A

j
n − A

j−1
n

Ãjn = Ajn − (λj − λj−1)(A
j
n + A

j−1
n )

C
j

n−1 + C
j−1
n A

j
nA

j1
n

(17)

C̃j−1
n = Cj−1

n − (λj − λj−1)(C
j

n−1 + C
j−1
n )

C
j

n−1 + C
j−1
n − A

j
n − A

j−1
n

C̃jn = Cjn + (λj − λj−1)(C
j
n + C

j−1
n+1)

C
j
n + C

j−1
n+1 − A

j

n+1 − A
j−1
n+1

(18)

λ̃j−1 = λj λ̃j = λj−1 (19)

all otherAkn, C
k
n andλk remaining unchanged.

In the continuous limitx = nh, h → 0 (if it exists), the difference spectral
transformations turn into the differential formulae (2) and (3), and the derived symmetry
turns into (7) and (8). For example, it can be seen using the following expansion in the
next-next-to-the-leading-terms order

Ajn → −(1 + hfj (x)) Cjn → −(1 − hfj (x)+ 1
2h

2(f 2
j (x)− f ′

j (x)− µj))

λj → 4 − h2µj λ → 4 − h2µ ψj
n → h−jψj (x)

whereµj andµ denote spectral parameters for the continuous Schrödinger equation. Similar
to the differential case [6], the discrete symmetries of (15)j → j+k and (17)–(19) describe
Bäcklund transformations for discrete Painlevé transcendents and theirq-analogues defined
by the self-similar reduction (16). Evidently, the symmetry (17)–(19) is expected to satisfy
the group law (10), but the author was able to verify explicitly only the simplest relations
(the difficulty consists in the non-local character of transformations ofA

j
n andCjn in the

variablen).
Let us turn now to the discrete-time Volterra lattice

Dj
n(D

j

n−1 − βj ) = Dj−1
n (D

j−1
n+1 − βj−1) (20)

which has been derived in [8]. The discrete-time analogue of the relation between solutions
of the Toda and Volterra chains has the following form [8]:

Ajn = D
j

2nD
j

2n+1 Cjn = (D
j

2n+1 − βj )(D
j

2n+2 − βj ) (21)

λj = constant− β2
j .
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There is also a second similar set of formulae

Ajn = D
j

2n−1D
j

2n Cjn = (D
j

2n − βj )(D
j

2n+1 − βj ) (22)

with the same expression forλj via βj .
From the even–odd index representation of superpotentialsA

j
n andCjn via Dj

n , one may
expect a similar splitting for symmetry transformations of the chain (20). After some tedious
calculations the author has proven the following proposition (no symbolic manipulation
computer programs have been used in the calculations).

Proposition 2. The discrete symmetry associated with a freedom in intermediate steps of
double discrete-time shifts in the discrete-time Volterra lattice (20) withβj 6= 0 for any j
has the form

D̃j
n = 1

βj−1

(
βjD

j
n + (β2

j − β2
j−1)(D

j
nD

j

n+1 +D
j−1
n D

j−1
n+1)

βj (βj −D
j

n−1 −D
j

n+1)+ βj−1(βj−1 −D
j−1
n −D

j−1
n+2)

)
(23)

D̃j−1
n = 1

βj

(
βj−1D

j−1
n − (β2

j − β2
j−1)(D

j

n−1D
j
n +D

j−1
n−1D

j−1
n )

βj (βj −D
j

n−2 −D
j
n)+ βj−1(βj−1 −D

j−1
n−1 −D

j−1
n+1)

)
. (24)

The change of spectral parametersβj is as follows:

β̃j = βj−1 β̃j−1 = βj . (25)

All other variablesDk
n, βk, k 6= j, j − 1, remain unchanged. Actually, one can reverse the

signs ofD̃j , D̃
j−1
n simultaneously with the signs of̃βj , β̃j−1, but this symmetry is obvious

from the structure of the chain (20).

The transformation laws for superpotentialsAjn andCjn of the discrete-time Toda lattice
follow from the maps (21) and (22).

If βj−1 = 0 (j is fixed), there appears a curious freedom:

D̃j
n =

(
aj ± (−1)n

√
a2
j − 1

) Dj−1
n (D

j
n − βj )

D
j

n−1 − βj
D̃j−1
n = D

j

n−1 (26)

whereaj is an arbitrary parameter. Theβj−1 → 0 limit in (23) and (24) corresponds to the
aj = 1 choice in (26). Ifβj = 0, one has

D̃j
n = D

j−1
n+1 D̃j−1

n =
(
bj ± (−1)n

√
b2
j − 1

) Dj
n(D

j−1
n − βj−1)

D
j−1
n+1 − βj−1

(27)

with a different free parameterbj . Theβj → 0 limit in (23) and (24) corresponds tobj = 1.
Suppose thatβj = 0 for arbitraryj , then the chain (20) admits an integral of the form

Dj
n =

(
γj ± (−1)n

√
γ 2
j − 1

)
D
j−1
n+1 (28)

whereγj are arbitrary constants. The symmetry we are interested in now has a two-parameter
freedom

D̃j
n =

(
aj ± (−1)n

√
a2
j − 1

)
D
j−1
n+1 D̃j−1

n =
(
bj ± (−1)n

√
b2
j − 1

)
D
j

n−1.

Theβj , βj−1 → 0 limits in (23) and (24) provide the transformation laws defined only upon
the subspace of solutions corresponding to theγj = ±1 choices in (28).
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We would like to finish this work by giving an explicit example, illustrating how the
above symmetry changes orthogonal polynomials. Consider the following solution of the
chain (15) [8]:

Ajn = n sinh2 θ/2 Cjn = (n+ j − 1) cosh2 θ/2 λj = −j + 1

associated with a family of the Meixner polynomialsP jn (λ):

P
j

n+1(λ)+ 1
4n(n+ j − 1) sinh2 θP

j

n−1(λ)+ (n coshθ + j sinh2 θ/2)P jn (λ) = λP jn (λ) (29)

P
j

−1(λ) = 0 P
j

0 (λ) = 1.

In the standard (self-similar) case spectral transformations correspond to the change of
the parameterj → j ± 1. Using the formulae (17) and (18) we find superpotentials,
corresponding to the non-standard backward discrete-time step,

Ãjn = n sinh2 θ/2

(
1 + 1

n+ (j − 2) cosh2 θ/2

)
C̃jn = (n+ j − 1) cosh2 θ/2

(
1 − 1

n+ 1 + (j − 2) cosh2 θ/2

)
which generate the following recurrence coefficients:

ũj−1
n = ÃjnC̃

j

n−1 = n(n+ j − 2) sinh2 θ

4

(
1 − 1

(n+ (j − 2) cosh2 θ/2)2

)
(30)

b̃j−1
n = Ãjn + C̃jn + λ̃j = n coshθ + (j − 1) sinh2 θ/2

− (j − 2) sinh2 θ

4(n+ (j − 2) cosh2 θ/2)(n+ 1 + (j − 2) cosh2 θ/2)
. (31)

Note that forj > 2 the coefficients̃uj−1
n are positive forn = 0, 1, . . . , which is necessary for

the positivity of the measure of the orthogonal polynomialsP̃
j−1
n (λ). This transformation

looks similar to the continuous Schrödinger equation case, when the harmonic oscillator
superpotentialfj (x) = x, corresponding to a self-similar solution of the chain (6) with
λj = 2j , is mapped onto the singular harmonic oscillator superpotentialf̃j (x) = x + 1/x
(herej is fixed due to the breakdown of self-similarity). Probably a similar interpretation
in terms of the discretized harmonic oscillator problem is valid for the relation between
the standard Meixner polynomials (or the more simple Charlier polynomials) and the above
singular system.

One essential point has not been touched on in this work, namely, the geometric
interpretation of the transformations (17)–(19) for the discrete-time Toda lattice and (23)–
(25) for the discrete-time Volterra lattice similar to the one in [6]. This is a matter for
separate consideration.

A part of this work was done in the summer of 1994 at the Centre de Recherches
Mathématiques, Université de Montŕeal with the support from NSERC (Canada) and Fonds
FCAR (Qúebec). The author is indebted to L Vinet and A Zhedanov for generating his
interest in the discrete Schrödinger equation the year before.
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